OPERATING MANUAL FOR

MULTI FUNCTION METER

(Model: MFM 9015)

INDUSTRIAL CONTROLS \& DRIVES (INDIA) PVT. LIMITED
New No: 33 Old No:10, Mettukuppam Road, (via) Alapakkam Road,
Maduravoyal, Chennai - 600095.
Ph: 8754422512, 531, 534
Website: www.icdipl.net e-mail : sales@icdipl.net

2

CONTENTS

1. General Features....... 3
2. Installation....... 4
2.1. Mounting....... 4
2.2. Wiring....... 4
3. Wiring Diagram....... 6
4. Front Panel Features 9
4.1 Changing the configuration Items :....... 9
4.2 Key Description....... 10
5. Programming Instructions....... 11
6. RUN Mode display pages....... 15
7. Communication Port Details....... 18
7.1 Communication connection diagram....... 21
8. Technical specification 22

MULTIFUNCTION METER

1. General Features

ICD Multi function meter MFM 9015 is designed with latest state of art technolgy. It offers high accuracy, reliability and also real value for money. This next generation micro controller based instruments monitors over 30 vital parameters and does not require any external Transducers. This instrument is most suitable for measuring all electrical parameters in 3 phase industrial applications. It replaces several meters like Voltmeters, Ammeters, Wattmeters,Frequency meter, kVA meter, kVAR meter, pf meter and selector switches for the above in an electrical panel.

The measured informations are shown on a 16 digit 0.56 " seven segment red LED display, which is splitted into 4 rows. Four keys are provided on the front panel of the meter to access these information easily and quickly. The front panel is provided with antiglare feature for improved readability.

The measurement parameters include 3 phase voltage, 3 phase Instant parameters (current, kVA, kW, kvar, PF \& Frequency) and Energy parameter in Import \& Export mode. All voltage, Current, Power and energy readings are true R.M.S including harmonics(if applicable). The power and energy measurement is done for the full four quadrants. The meter computes and updates the parameters in every 2 seconds.

The Power Multimeter MFM 9015 is also provided with a optional RS 485 optically isolated communication port supporting MOD BUS RTU protocol. The port is very useful in networking the meters in multidrop communication and to collect datas in a centralised control room using any standard SCADA Software package like cimplicity, intellution, wonderware \& citech etc.

Note : For Every change of LT \Leftrightarrow HT or $1 A \Leftrightarrow 5 A$ or 3 Wire $\Longleftrightarrow 4$ Wire the instrument should be switched OFF and then made ON.

2. Installation

2.1. Mounting

The meter is housed in a compact ABS plastic enclosure of dimension $96(\mathrm{H}) \times 96(\mathrm{~W}) \times 45(\mathrm{D}) \mathrm{mm}$. The meter is suitable for panel mounting and has reliable mounting clamps to hold the meter to the panel.

The panel cut out for fixing the meter is a $92 \times 92 \mathrm{~mm}$. The depth behind the panel is 45 mm . Always provide extra space for the connectors and wiring. The panel cut out should be punched with proper tool and should be free from burrs. Insert the meter through panel cutout from front and fix the mounting clamps provided with the meter on each side.

2.2. Wiring

2.2.1 Selection of PT \& CT

The measurement of voltage and current is done using the PT voltage and CT current inputs. So the accuracy of measurement is determined by the accuracy and phase shift produced by the PT's and CT's so it is recommended to use PT's and CT's of instrument class 0.5 or better.

Also the PT's and CT's should have adequate VA rating to support the burden on the secondary side of them. The primary rating of the CT has to be selected such that the load variation lies between the dynamic range of the CT. (30% to 80% of the primary current).

2.2.2 Voltage signal connections

The MFM 9015 directly accepts voltages upto 415VAC R.M.S line to line (240VAC R.M.S line to neutral) with 10% over load capacity in case of LT selection and 110VAC R.M.S line to line (63.5 VAC R.M.S line to Neutral) with 10% over load capacity in case of HT selection. The primary of the PT is field programmable upto 330 kV .

There are four voltage input terminals marked as $\mathrm{R}, \mathrm{Y}, \mathrm{B} \& \mathrm{~N}$. The three phase input voltage should be connected to those terminals. MFM 9015 voltage input burden : 0.25VA per phase

2.2.3 Current signal connections

The MFM 9015 current inputs can accept 5A/1A AC R.M.S(selectable) for connecting external CT's. The CT Secondary value is field programmable. The current inputs has over load capability of 120% In both the cases.

There are three pairs of terminals marked as IR $(M, L) I Y(M, L)$ and IB (M,L) for the connection of external CT's. For proper measurements, the polarity of the CT's must be connected properly. The CT wiring must be properly done by deenergising the CT secondary by shorting it through a shorting block. The primary current of CT is field programmable upto 10000A.

MFM 9015 Current input burden : 0.5VA per phase / 0.25VA per phase

3. Wiring Diagram

3.1) Three phase four wire LT systems (3 watt measurement)

Voltage Input : Direct 240 V AC P-N (-20% to $+10 \%$)
Current Input : 5/1A provide through 3 CT's

3.2) Three phase three wire HT systems (2 watt measurement)

Voltage Input : 110 V AC $(\mathrm{L}-\mathrm{L})$ (Through PT)
Current Input : 5/1A provide through 2 CT's

3.3) Auxiliary power supply connections

The Meter derives power from auxiiiary power supply terminals which is seperatly provided in the meter. SMPS circuit is used to power up the meter so it can work from th range of $90-270 \mathrm{~V}$ AC/DC RMS The auxiliary supply should be connected to proper specified voltage.

Burden on Auxiliary supply terminals: 4VA

3.4) Cross checking the wiring

The three phase voltage wiring and current wiring are to be properly done for correct measurements. Any wrong connections done either during installation or during rewiring can produce wrong measurement of electrical parameters. These incorrect wirings are difficult to detect since they produce wrong readings close to the expected readings.

The MFM 9015 has a built in program to identify the reverse sequences in PT as well as CT wiring. A seperate diagnostic display page is provided to view the PT, CT Connections. IT can be selected by pressing the Shift Key repeatedly. If the PT \& CT wiring are done correctly. The diagnostic page shows as

Otherwise the phase in which voltage connections or current connections are wrongly connected is displayed. (PT shows "RYB" when sequence connected is correct (RYB $Y B R \& B R Y$) or else shows " $R B Y$ ', if sequence connected is incorrect (RBY, YRB \& BYR). CT shows reversal, when CT not synchronised with PT or wiring are Interchanged/Reversed or Load in Export Mode.

Note : While checking the wiring through the diagnostic page, make sure the load current is 10% above the full scale current and also the load is in import mode.

4. Front Panel Features

The LED Display is a 4 row 0.56 " quard digit 7 segment red display. It is used to display voltage, current, kVA, kW, KVAr, PF, Freq., kWh, kVAh, kVArh, Run Hour, THD(if applicable) \& program mode settings.

The "COM" Bicolour LED is provided to Indicate the activity in the communication port. The COM LED flashes, whenever the data is received through communication port and when data is transmitted from the meter. This LED is not provided in the meters without communication port. Calibration pulse output is provided through 3mm RED LED in front panel. Meter constant is 3200 impulse/kWh.

4.1 Changing the configuration Items

In program mode, after selecting the configuration item through Index key, It can be altered by using shift, Increment \& Enter key.

The shift () key is used to select the digit one by one. The selected digit is shown by flashing that digit.

The Increment ($\boldsymbol{\Delta}$) key is used to increment the selected digit. The increment key Increments the digit from 0 to 9 and then wraps down to zero once again. Shift and Increment keys are also used for selecting the required parameter.

Once the required values are set in the configuration items press the Enter \downarrow key to store it in memory. If the change is accepted the display Indicates ' E ' otherwise an error message is displayed as 'Error'.

Once the configuration Items are programmed hold in the \& - keys together for 3 seconds to return back to normal operating mode.

4.2 Key Description :

Keys	Program mode	Normal operating mode
	Index key (To select Menu's)	SCRL/HLD (To switch between Scroll/Hold mode)
- \uparrow	Shift Key (To move between characters \& to select parameters)	To increment Display pages
\downarrow	Increment Key (To increment the selected digit \& to select parameters)	To decrement Display pages
	Enter Key (To store the modifications \& datas)	More Key (To view further sub pages)

5. Programming Instructions

All meters are to be programmed properly to work in a particular Installation. The various items that are to be programmed are shown in the table below.

Configuration Item	Multi Function Meter
New pass word Primary \& secondary Voltage Primary \& Secondary Current Device Id Energy \& Run Hour reset	All meters
All meters	
All meters meters	

The meters are provided with password facility to prevent alteration of configuration items by unauthorised persons. The configuration Items of the meter may be changed by following the sequence given below.

With power applied to the meter hold in the $>\boldsymbol{\Delta}$ keys (shift and Incr) together for 3 seconds.

PrOG The display Indicates Program enter password. The

EPū

- - - -

PrOG
node
After valid password is entered the meter enters into program mode by showing it in display.

Special Note

If the user enters the 'Enter pass word' for the first time, or if the user fails to remember the password entered in 'New pass word', the default password 0386 can be entered.

The configuration Items can be selected by pressing the Index (\#) key. Top row in displays are used to differentiate the various configuration items. The displays for various configuration item are given below,

$\quad \mathrm{nPu}$

Password to prevent unauthorised persons entry (Range : 0000-9999)

Press \# Key

Press \# Key
SECV

110

Press \# Key
Pr IA
1000

Press \# Key

Primary Voltage setting
(Range : 0-330000V AC)

Secondary Voltage setting (415V for LT \& 110 V for HT meters)

Primary Current setting
(Range : 0-9999 AC)

Secondary Current setting

(Range : 1 / 5 A AC)

Press \# Key

$\overline{\mathbf{u}} \mathbf{\text { IrE }}$
$\mathbf{4}$
:---
(4 Wire / 3 Wire)

Press \# Key

$\mathbf{d - l \mathbf { d }}$
$\mathbf{0 0 1}$

Press \# Key
bdrt
Baude Rate setting for Communication speed (Range : 9600 \& 19200)

Press \# Key

Press \# Key

Sblt
Stop bit, Either we can select
(1 / 2)

Favourite page selection, Either we can select any one
EnrG as a first page (VAF / Power / Energy)

Press \# Key

ErSt
dOnE
kWh Energy Reset. (pressing Enter key resets energy \& Run Hour and displays "kWh rst dOnE" in Bottom Row)

Again pressing Index (\#) key repeats the same process in cyclic manner. Press $>\boldsymbol{A}$ keys (Shift \& Increment) together for few seconds to quit program mode \& return to RUN mode.

6. RUN Mode display pages

When power is applied to the Multi function meter the starting message consisting of make, year \& model no, and the run mode is selected automatically. In Run mode the power parameters are shown in different pages. These pages are accessed using the "Page UP \& DOWN" keys provided on the front panel. The display pages, can also be made to scroll automatically 5 seconds once by selecting scroll mode by pressing scroll/hold key. The selected mode is initially shown in the first tow rows of the display.

The Scroll or Scroll/Hold key toggles between Scroll \& Hold mode. The available display pages are given below. Each displayed parameter is assigned with LED, on displaying the parameters, LED assigned to it glows to enable the user to understand easily.

Page - 1
(a)

(b)

1000
1001
1001
1001

a) Line to neutral voltage, Line to Line voltage, Current and Line frquency
press
 key b) c) d) Individual current ($R, Y \& B$) and Average current

(a)	¢-\vdots¢	(b)	¢\vdots0\vdots¿	(c)		(d)	$\begin{aligned} & \stackrel{\rightharpoonup}{む} \\ & \stackrel{y}{2} \\ & \stackrel{0}{0} \\ & \stackrel{y}{2} \end{aligned}$	(e)
720.0		240.0		208.5		118.8		0.869
625.6		240.0		208.4		118.7		0.868
356.5		240.0		208.6		118.9	,	0.869
0.869		720.0		625.6		356.5		0.869

$$
\begin{aligned}
& \text { press } \quad \rightarrow \text { bey } \quad \text { b) Individual KVA, (R, Y \& B). \& Total KVA. } \\
& \text { c) Individual } K W(R, Y \& B) \& \text { total } k W \text {. } \\
& \text { d) Individual } \operatorname{KVAr}(R, Y \& B) \& \text { Total } K V A r \\
& \text { e) Individual PF (R, Y \& B) \& Avearage PF. }
\end{aligned}
$$

Page - 3

a) Intergration of Kva \& Kw
b) Previous Kvah
c) Previous Kwh

Page - 4

press key $\begin{aligned} & \text { a) Intergration of Kvar in Lag } \\ & \text { b) Previous Lag Kvarh }\end{aligned}$

Page - 5
(a)

press \square^{\square} key
a) Intergration of Kvar in Lead
b) Previous Lead Kvarh

Page - 6
(a)

(c)

${ }^{\text {press }} \frac{\square}{4}$ key
a) Run Hour (RH)
b) Previous Run Hour (RH)
c) CT reverse status \& PT sequence.

The above pages are given for 3 phase 4 wire LT meters. For HT meters, the resolution and units will change as given in technical specifications. The display pages sequence and parameters can be altered based on user requirement (to be mention while ordering).

7. Communication Port Details

The MFM 9015 is provided with a optically Isolated RS 485 communication Port. The communication protocol used is MODBUS RTU or MODBUS-ASCII (to be specified while ordering).Using the communication Port, the meters can be connected in multi drop network and data can be collected in a centralised control room using any standard SCADA Software.

The communication between the PC and the instrument would be in Master slave mode. P.C acts as a master and sends a command message (query) containing the slave Id, function code and address of the information required. The command is received by all the slaves. The slave whose address is matching with that of the command address would respond with the requested data.

The communication settings are,
Protocol : MODBUSRTU
Baud rate : 9600
Data bit : 8
Starting Address : 40001
Data Type : UINT
Communicating mode : Half Duplex

The above configuration are to be done in any standard scada package for collecting the data.

The instrument is provided with screwable 2 pin phoenix connector for connecting the communication cable at the rear side. Terminal details are (From top to Bottom)

豕

SI. No Parameter		Address	Resolution	
			LT	HT
1	R - Voltage	40001	0.1	0.01
2	Y - Voltage	40002	0.1	0.01
3	B - Voltage	40003	0.1	0.01
4	RY Voltage	40004	0.1	0.01
5	YB Voltage	40005	0.1	0.01
6	BR Voltage	40006	0.1	0.01
7	R Current	40007	0.1	0.1
8	Y Current	40008	0.1	0.1
9	B Current	40009	0.1	0.1
10	Total kVA	40010	0.1	1
11	Total kW	40011	0.1	1
12	Total kVAr	40012	0.1	1
13	Total PF	40013	0.001	0.001
14	Frequency	40014	0.01	0.01
15	kWH MSB	40015	0.1	1
16	kWH LSB	40016	0.1	1
17	Meter Type / Runhour MSB	40017		
18	Runhour LSB	40018		
19	Import / Export	40019		
20	kVAh MSB	40020	0.1	1
21	kVAh LSB	40021	0.1	1
22	Lag kVArh MSB	40022	0.1	1
23	Lag kVArh LSB	40023	0.1	1
24	Lead kVArh MSB	40024	0.1	1
25	Lead kVArh LSB	40025	0.1	1

Note:

a) Σ PF Calculation: If P.F <1000 PF is in Lag (P.F $=P F$) If P.F >1000 PF is in Lead P.F $=(P F-1000)$
b) $\Sigma \mathrm{kWh}$ Calculation : $\Sigma \mathrm{kWh}=(\mathrm{kWh}$ MSB * 65536) +kWH LSB
c) Meter Type / Runhour MSB : 256
d) $\mathbf{Q}=$ Meter Type : $\quad 03=\mathrm{LT} 3 \mathrm{~W}, 04=\mathrm{LT} 2 \mathrm{~W}, 05=\mathrm{HT} 3 \mathrm{~W}$, 06 = HT 2 W
e) Imp. \& Exp. status : $0=$ Import, $1=$ Export
f) R: Runhour MSB
g) Total Runhour : (Runhour MSB * 65536) + Runhour LSB

7.1 Communication connection diagram

When connecting the meters in multidrop communication network, the following methods are to be adopted for trouble free communication.

1. Loop Topology

In this method, the communication continous to work even if there is a breakage in any one of the Loop. Termination resistors are not required.

2. Straight line Topology

In this method termination resistor RT (60-100 W) of value equal to characteristic Impedance of the cable used may be required to avoid reflection loses.

It is recommended to use proper \& suitable communication cable for trouble free communication.

8. Technical specification (class $0.5 / 1$)

Type	: ICD make MULTI FUNCTION METER
Model	MFM 9015
Application	: LT / HT Application (Field Programmable)
Voltage Input	LT : 415 AC RMS (-20\% to +10\%)
(Line to Line)	HT : 110 V AC RMS (-20\% to +10\%)
Current Input	5A/1A AC R.M.S. (Field Programmable)
Over Load Capacity	10A Max continuous, 50A max for 3 seconds
Working Load Range	0.5\% to 120\% of load current
Frequency	45.00 to 55.00 Hz
Measurement Method	: 3 Watt Meter or 2 Watt Meter (Field programmable).
Accuracy	Class 0.5 as per IS 14697 (or) Class 1 as per IS 13779 (ordering Option)
Display	: 4 row 0.56 " Quard digit 7 segment red display
Programmable	
Parameters	secondary current, Device ID, Energy \& Runhour Reset facility with password protection
Parameters storage	: In non-volatile EERAM (including Energy \& Runhour)
Phase Reverse Indicatio	n : Provided in the display page
Display page selection	By set of keys provided in front panel.
Calibration pulse O/P	Provided through Red LED in front panel
Meter Constant	3200imp/kWh
THD Accuracy	$\pm 2 \%$ OFS for \% values (for loads > 20\%)

Burden on Voltage I/P : 0.25VA per phase
Burden on Current I/P : 0.25 V A per phase

PC Interface (Optional) : An optically isolated RS 485 O/P is available with MODBUS-RTU protocol.
Isolation $: 2 \mathrm{kV}$ Isolation for 1 minute between communication and other circuits.

Parameter displayed : (Class 0.5)

Parameter	Range	Resolution	Accuracy
R, Y, B Voltage	180-270 V AC	0.1 V (LT)	$\pm 0.5 \% \pm 2$ Least digit
	Primary Voltage set	$0.01 \mathrm{kV}(\mathrm{HT})$	$\pm 0.5 \% \pm 2$ Least digit
RY, YB, BR Voltage	310-470 V AC	0.1 V (LT)	$\pm 0.5 \% \pm 2$ Least digit
	Primary Voltage set	$0.01 \mathrm{kV}(\mathrm{HT})$	$\pm 0.5 \% \pm 2$ Least digit
Current	0000-0100 A AC	0.1 A (LT \& HT)	$\pm 0.5 \% \pm 2$ Least digit
	$>010 \overline{0}$ - primary current (CT) set	$\overline{1} \mathrm{~A}(\mathrm{LT}$ \& $\overline{\mathrm{HT}})$	
kVA, kVAr (LT) 3 Phase \& total	0-1000 kVA/ kVAr	$0.1 \mathrm{kVA} / \mathrm{kVAr}$	$\pm 0.5 \% \pm 2$ Least digit
	>1000 kVA / kVAr	$1 \mathrm{kVA} / \mathrm{kVAr}$	
kVA, kVAr (HT) 3 Phase \& total	0-10000 kVA/kVAr	1 kV A/ kVAr	$\pm 0.5 \% \pm 2$ Least digit
	$>10000 \mathrm{kVA} / \mathrm{kVAr}$	0.01 MVA/MVAr	
kW (LT) 3 Phase \& total	$0-1000 \mathrm{~kW}$	0.1 kW	$\pm 0.5 \% \pm 2$ Least digit
	$>1000 \mathrm{~kW}$	1 kW	
kW (HT) 3 Phase \& total	0-10000 kW	1 kW	$\pm 0.5 \% \pm 2$ Least digit
	$>10000 \mathrm{~kW}$	0.01 MW	
Power factor 3 Phase \& total	0.1Lg - Unity - 0.1Ld	0.001 (LT \& HT)	$\pm 0.5 \% \pm 2$ Least digit
Frequency	$45.00-55.00 \mathrm{~Hz}$	$0.01 \mathrm{~Hz}(\mathrm{LT}$ \& HT	$\pm 0.2 \%$
kWh, kVAh \& kVArh	9999999.9	0.1 (LT)	Class 0.5 as per IS 14697 ($\pm 0.5 \%$)
	9999999.9	0.1 (HT)	
Run Hour	9999.59 Hours Max.	1 Minute	$\pm 1 \mathrm{sec} / \mathrm{day}$

Parameter displayed : (Class 1)			
Parameter	Range	Resolution	Accuracy
R, Y, B Voltage	50-280 V AC	0.1 V (LT)	$\pm 1 \%+2$ east digit
	25-80 V AC	$0.01 \mathrm{kV}(\mathrm{HT})$	$\pm 1 \%+2$ Least digit
$R Y, Y B, B R$ Voltage	90-485 V AC	0.1 V (LT)	$\pm 1 \%+2$ east digit
	40-140 V AC	$0.01 \mathrm{kV}(\mathrm{HT})$	$\pm 1 \%+2$ Least digit
Current	0-100 A AC	0.1 A (LT \& HT)	$\pm 1 \%+2$ Least digit
	> 100 A - primary current (CT) set	$1 \mathrm{~A}(\mathrm{LT}$ \& HT)	
kVA/KW/kVAr (LT 3 Phase \& total	$\begin{aligned} & \frac{0-1000 \mathrm{KVA} / \mathrm{KW} / \mathrm{KVAr}}{>1000} \mathrm{kVA} / \mathrm{KW} / \mathrm{kVAr} \\ & >1 \end{aligned}$	$-\frac{0.1 \mathrm{kV}}{1 \mathrm{kVA} / \mathrm{A} / \mathrm{KW} / \mathrm{KW} / \mathrm{kVAr}}$	$\pm 1 \%+2$ Least digit $\pm 1 \%+2$ Least digit
kVA/KW/kVAr(HT 3 Phase \& total	$\begin{array}{\|l\|} \frac{0-10000 \mathrm{kVA} / \mathrm{KW} / \mathrm{kVAr}}{\mathrm{k}}-2 \mathrm{kVA} / \mathrm{KW} / \mathrm{kVAr} \end{array}$	$\begin{aligned} & -\frac{1 \mathrm{kVA} / \mathrm{KW} / \mathrm{kVAr}}{-1}-\frac{\mathrm{MVA} / \mathrm{MW} / \mathrm{MVAr}}{} \\ & \hline 0.01 \end{aligned}$	$\begin{aligned} & \pm 1 \%+2 \text { Least digit } \\ & \pm 1 \%+2 \text { Least digit } \end{aligned}$
3Phase Power factor\&Avg	.0Lg - Unity - 0.0Ld	0.001 (LT \& HT)	$\pm 1 \%+2$ Least digit
Frequency	$40.00-60.00 \mathrm{~Hz}$	$0.01 \mathrm{~Hz}(\mathrm{LT} \& \mathrm{HT})$	$\pm 0.2 \%+2$ Least digi
kWh, KVAh \& kVArh	9999999.9	0.1 (LT/HT)	Class 1 as per IS 13779 ($\pm 1 \%$)
Run Hour	9999.59 Hours Max.	1 Minute	$\pm 3 \mathrm{sec} / \mathrm{day}$

Auxiliary Supply	$: 90-270 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
Burden on Auxiliary I/P	$: 4 \mathrm{~V} \mathrm{~A}$
Operating Temperature	$: 10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Box Dimension	$: 96(\mathrm{~W}) \times 96(\mathrm{H}) \times 45(\mathrm{D}) \mathrm{mm}$
Cutout	$: 92 \times 92 \mathrm{~mm}$
Mounting	$:$ Panel
Enclosure	$:$ ABS Plastic case
Weight	$: 400 \mathrm{~g}$ (Approximately)

